Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Viruses ; 13(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34452367

RESUMO

The BK polyomavirus (BKPyV), a representative of the family Polyomaviridae, is widespread in the human population. While the virus does not cause significant clinical symptoms in immunocompetent individuals, it is activated in cases of immune deficiency, both pharmacological and pathological. Infection with the BKPyV is of particular importance in recipients of kidney transplants or HSC transplantation, in which it can lead to the loss of the transplanted kidney or to haemorrhagic cystitis, respectively. Four main genotypes of the virus are distinguished on the basis of molecular differentiation. The most common genotype worldwide is genotype I, with a frequency of about 80%, followed by genotype IV (about 15%), while genotypes II and III are isolated only sporadically. The distribution of the molecular variants of the virus is associated with the region of origin. BKPyV subtype Ia is most common in Africa, Ib-1 in Southeast Asia, and Ib-2 in Europe, while Ic is the most common variant in Northeast Asia. The development of molecular methods has enabled significant improvement not only in BKPyV diagnostics, but in monitoring the effectiveness of treatment as well. Amplification of viral DNA from urine by PCR (Polymerase Chain Reaction) and qPCR Quantitative Polymerase Chain Reaction) is a non-invasive method that can be used to confirm the presence of the genetic material of the virus and to determine the viral load. Sequencing techniques together with bioinformatics tools and databases can be used to determine variants of the virus, analyse their circulation in populations, identify relationships between them, and investigate the directions of evolution of the virus.


Assuntos
Vírus BK/genética , Vírus BK/patogenicidade , Variação Genética , Genoma Viral , Infecções por Polyomavirus/diagnóstico , Animais , Vírus BK/classificação , DNA Viral/genética , Genômica , Genótipo , Hospedeiro Imunocomprometido , Rim/virologia , Transplante de Rim/efeitos adversos , Camundongos , Vírus Oncogênicos/genética , Vírus Oncogênicos/patogenicidade , Patologia Molecular/métodos , Infecções por Polyomavirus/virologia , Transplantados , Infecções Tumorais por Vírus/virologia , Carga Viral
3.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361112

RESUMO

The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.


Assuntos
Metilação de DNA , Epigenômica , Neoplasias/patologia , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/complicações , Animais , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Infecções Tumorais por Vírus/virologia
4.
Pharmacol Res ; 170: 105730, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119621

RESUMO

Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Transformação Celular Viral , Farmacorresistência Viral , Neoplasias/tratamento farmacológico , Vírus Oncogênicos/patogenicidade , Animais , Antineoplásicos/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virologia , Transdução de Sinais , Microambiente Tumoral
5.
Adv Virus Res ; 109: 31-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33934829

RESUMO

Mass spectrometry imaging (MSI) is a label-free molecular imaging technique allowing an untargeted detection of a broad range of biomolecules and xenobiotics. MSI enables imaging of the spatial distribution of proteins, peptides, lipids and metabolites from a wide range of samples. To date, this technique is commonly applied to tissue sections in cancer diagnostics and biomarker development, but also molecular histology in general. Advances in the methodology and bioinformatics improved the resolution of MS images below the single cell level and increased the flexibility of the workflow. However, MSI-based research in virology is just starting to gain momentum and its full potential has not been exploited yet. In this review, we discuss the main applications of MSI in virology. We review important aspects of matrix-assisted laser desorption/ionization (MALDI) MSI, the most widely used MSI technique in virology. In addition, we summarize relevant literature on MSI studies that aim to unravel virus-host interactions and virus pathogenesis, to elucidate antiviral drug kinetics and to improve current viral disease diagnostics. Collectively, these studies strongly improve our general understanding of virus-induced changes in the proteome, metabolome and metabolite distribution in host tissues of humans, animals and plants upon infection. Furthermore, latest MSI research provided important insights into the drug distribution and distribution kinetics, especially in antiretroviral research. Finally, MSI-based investigations of oncogenic viruses greatly increased our knowledge on tumor mass signatures and facilitated the identification of cancer biomarkers.


Assuntos
Espectrometria de Massas/métodos , Imagem Molecular/métodos , Pesquisa , Vírus/química , Animais , Livros , Humanos , Espectrometria de Massas/instrumentação , Metabolômica , Imagem Molecular/instrumentação , Vírus Oncogênicos/patogenicidade , Vírus de Plantas/patogenicidade , Plantas/virologia , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Vírus/genética
6.
J Med Virol ; 93(8): 5065-5075, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942339

RESUMO

Viral infection has been implicated in the pathogenesis of a plethora of human diseases. Although antiviral therapies effectively confront the viral spread and infection, how to completely eradicate the viral genome from infected cells remains a challenge. In this study, we demonstrated the reversible switching of primary cells between normal and malignant states by an oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and CRISPR/Cas9-mediated targeting of a major viral latent protein. Primary cells can be transformed into malignant status by infection of KSHV, while elimination of the KSHV genome from latent KSHV-infected cells reverses KSHV-transformed primary cells back to a "normal state" by CRISPR/Cas-mediated knockout of viral major latent gene LANA. As a proof of concept, we demonstrated efficient elimination of KSHV episome in KSHV-associated primary effusion lymphoma cells resulting in the induction of apoptosis by liposome-encapsulated CRISPR/Cas9 ribonucleoprotein complexes (Lipo/Cas9-LANAsgRNA). Our work illustrates CRISPR/Cas as a promising technology for eliminating oncogenic viruses from persistently infected cells by taking advantage of the genetic differences between viral and cellular genomes. Compared to traditional antiviral therapy, our study offer an approach for antagonizing human oncogenic virus-related cancers by directly targeting as well as clearing viral genomes.


Assuntos
Antígenos Virais/genética , Sistemas CRISPR-Cas , Transformação Celular Neoplásica/genética , Herpesvirus Humano 8/genética , Proteínas Nucleares/genética , Vírus Oncogênicos/genética , Animais , Antígenos Virais/metabolismo , Apoptose , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Ciclo Celular , Proliferação de Células , Técnicas de Inativação de Genes , Genoma Viral/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Linfoma de Efusão Primária/patologia , Células-Tronco Mesenquimais , Proteínas Nucleares/metabolismo , Vírus Oncogênicos/patogenicidade , RNA Guia de Cinetoplastídeos/genética , Ratos , Latência Viral/genética
7.
Open Biol ; 11(3): 210004, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653084

RESUMO

Infections cause 13% of all cancers globally, and DNA tumour viruses account for almost 60% of these cancers. All viruses are obligate intracellular parasites and hijack host cell functions to replicate and complete their life cycles to produce progeny virions. While many aspects of viral manipulation of host cells have been studied, how DNA tumour viruses manipulate host cell metabolism and whether metabolic alterations in the virus life cycle contribute to carcinogenesis are not well understood. In this review, we compare the differences in central carbon and fatty acid metabolism in host cells following infection, oncogenic transformation, and virus-driven cancer of DNA tumour viruses including: Epstein-Barr virus, hepatitis B virus, human papillomavirus, Kaposi's sarcoma-associated herpesvirus and Merkel cell polyomavirus.


Assuntos
Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Neoplasias/metabolismo , Vírus Oncogênicos/patogenicidade , Animais , Humanos , Neoplasias/virologia
8.
Virol J ; 18(1): 18, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441159

RESUMO

Viral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a significant global health burden. Beyond simply causing cellular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that significantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and substantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specific small-molecule drug screens or the broad-acting toxic effects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efficacy in this role. Although many challenges remain for the clinical application of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specific and permanent inactivation by nucleases, argues for their development as next-generation treatments for this aggressive group of cancers.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/virologia , Vírus Oncogênicos/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Viral/efeitos dos fármacos , Transformação Celular Viral/genética , Humanos , Camundongos , Oncogenes , Vírus Oncogênicos/patogenicidade
9.
RNA Biol ; 18(5): 809-817, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33499700

RESUMO

Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.


Assuntos
Interações Hospedeiro-Patógeno/genética , MicroRNAs/fisiologia , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncogênicos/genética , Vírus Oncogênicos/imunologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Replicação Viral/genética
10.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188476, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186643

RESUMO

BACKGROUND: It is well-known that certain cancers are caused by viruses. However, viral oncogenesis is complex and only a small fraction of the infected people develop cancer. Indeed, a number of environmental factors can contribute to virally infected cells developing cancer hallmarks, promoting tumorigenesis. SCOPE OF REVIEW: The hit-and-run theory proposes that viruses facilitate the accumulation of mutations and promote genomic instability until the virus becomes dispensable for tumour maintenance. Indeed, several studies have reported viral genome, episome and/or oncogene loss in tumour cells without losing malignant phenotype. MAJOR CONCLUSIONS: The current evidence supports the clear contribution of certain viruses to develop cancers. Importantly, the evidence supporting the sustained maintenance of malignancy after the loss of viral "presence" is sufficient to support the hit-and-run hypothesis of viral cancer development. Long-term tracking of vaccination outcome over the decades will test this theory. GENERAL SIGNIFICANCE: If the hit-and-run theory is true, viruses might cause more cancers than previously thought and will have implications in the prevention of many cancers through implementing vaccination programs.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias/genética , Oncogenes/genética , Vírus Oncogênicos/genética , Progressão da Doença , Instabilidade Genômica/genética , Humanos , Mutação/genética , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165885, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574835

RESUMO

Oncogenic viruses are among the apparent causes of cancer-associated mortality. It was estimated that 12% to 15% of human malignancies are linked to oncoviruses. Although modernist strategies and traditional genetic studies have defined host-pathogen interactions of the oncoviruses, their host functions which are critical for the establishment of infection still remain mysterious. However, over the last few years, it has become clear that infections hijack and modify cellular pathways for their benefit. In this context, we constructed the virus-host protein interaction networks of seven oncoviruses (EBV, HBV, HCV, HTLV-1, HHV8, HPV16, and HPV18), and revealed cellular pathways hijacking as a result of oncogenic virus infection. Several signaling pathways/processes such as TGF-ß signaling, cell cycle, retinoblastoma tumor suppressor protein, and androgen receptor signaling were mutually targeted by viruses to induce oncogenesis. Besides, cellular pathways specific to a certain virus were detected. By this study, we believe that we improve the understanding of the molecular pathogenesis of viral oncogenesis and provide information in setting new targets for treatment, prognosis, and diagnosis.


Assuntos
Carcinogênese/metabolismo , Interações Hospedeiro-Patógeno , Neoplasias/metabolismo , Vírus Oncogênicos/patogenicidade , Mapas de Interação de Proteínas , Humanos , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncogênicos/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais , Proteínas Virais/metabolismo
12.
Trends Cancer ; 6(3): 192-204, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32101723

RESUMO

The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.


Assuntos
Microbiota , Neoplasias/microbiologia , Analgésicos Opioides/uso terapêutico , Animais , Bactérias/metabolismo , Sistema Nervoso Central/fisiologia , Sinergismo Farmacológico , Microbiologia Ambiental , Gastrite/microbiologia , Microbioma Gastrointestinal , Infecções por Helicobacter/complicações , Interações Hospedeiro-Patógeno , Humanos , Imunoterapia , Camundongos , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Neoplasias/etiologia , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade , Probióticos , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/microbiologia , Simbiose , Infecções Tumorais por Vírus
13.
Klin Onkol ; 32(Supplementum 3): 72-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31627709

RESUMO

BACKGROUND: Cellular transformation induced by oncogenic viruses is a complex process including viral molecules, host cells and environmental factors. Viruses alone are unable to reproduce and thus they need a host to use their signalling, proteosynthetic and metabolic pathways. One target host molecule is the p53 tumour suppressor. Viral proteins functionally inactivate p53 and deregulate the expression of proteins active during apoptosis, cell proliferation and DNA damage response. Hepatitis virus B HbX protein and hepatitis virus C proteins NS2 and NS5A interact with p53 and prevent its localisation to the nucleus and thus reduce its transcriptional activity. Another mechanism lies in elevated p53 degradation caused by the BZLF1 protein of the Epstein-Barr virus, the LANA protein of the Kaposi sarcoma virus and human papilloma virus E6. The Merkel cell polyomavirus large T antigen does not interact directly with p53, however it acts through downregulation of p53 mediated transcription. The tax protein of human T cell lymphotropic virus type 1 modifies p53 posttranslationally and thus blocks its interaction with other factors of transcription machinery. Due to its tumour suppressor function and role in the maintenance of the genome integrity, the p53 protein is one of the best studied proteins. Following this, evolutionary homologues with important developmental functions p63 and p73 are intensively studied as well. Their roles in oncogenesis have not been clarified yet. PURPOSE: This review describes some of their known interactions with oncogenic viral proteins.


Assuntos
Carcinogênese/patologia , Interações Hospedeiro-Patógeno , Neoplasias/patologia , Vírus Oncogênicos/patogenicidade , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/metabolismo , Carcinogênese/metabolismo , Humanos , Família Multigênica , Neoplasias/metabolismo , Neoplasias/virologia , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Virais/genética
14.
Mol Biol (Mosk) ; 53(5): 871-880, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31661485

RESUMO

Numerous studies on the nature of neoplastic growth have demonstrated that oncogenic viruses maybe one of the factors causing cancer. According to various estimates, 10-20% of all human cancers are caused by viruses. For example, the Epstein-Barr virus (EBV), hepatitis B and C viruses, human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV-1), human herpesvirus type 8 (HHV-8), and Merkel cell polyomavirus were implicated in initiating tumors. At the same time, the long period between viral infection and the manifestation of cancer significantly complicates the search for a causal relationship between the presence of a virus in the human organism and the malignant transformation. For this reason, the role of certain viruses in the initiation of neoplastic processes in humans remains an unresolved issue.


Assuntos
Transformação Celular Neoplásica , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade , Viroses/patologia , Viroses/virologia , Humanos
15.
Genes (Basel) ; 10(8)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412687

RESUMO

Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Leucemia Mieloide Aguda/etiologia , Animais , Carcinógenos/toxicidade , Drosophila melanogaster , Leucemia Mieloide Aguda/patologia , Camundongos , Mutagênese , Vírus Oncogênicos/patogenicidade , Ratos , Peixe-Zebra
16.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20190041, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30955496

RESUMO

One out of 10 cancers is estimated to arise from infections by a handful of oncogenic viruses. These infectious cancers constitute an opportunity for primary prevention through immunization against the viral infection, for early screening through molecular detection of the infectious agent, and potentially for specific treatments, by targeting the virus as a marker of cancer cells. Accomplishing these objectives will require a detailed understanding of the natural history of infections, the mechanisms by which the viruses contribute to disease, the mutual adaptation of viruses and hosts, and the possible viral evolution in the absence and in the presence of the public health interventions conceived to target them. This issue showcases the current developments in experimental tissue-like and animal systems, mathematical models and evolutionary approaches to understand DNA oncoviruses. Our global aim is to provide proximate explanations to the present-day interface and interactions between virus and host, as well as ultimate explanations about the adaptive value of these interactions and about the evolutionary pathways that have led to the current malignant phenotype of oncoviral infections. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/patogenicidade , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/virologia , Animais , Vírus de DNA/fisiologia , Evolução Molecular , Humanos , Vírus Oncogênicos/fisiologia , Virulência
17.
Nutr Cancer ; 71(7): 1118-1131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007070

RESUMO

This is a case-cohort study to examine whether the excess of liver cancer deaths observed in workers in poultry plants could be explained by oncogenic viruses and chemical carcinogenic exposures within the plants. A detailed telephone questionnaire was administered, and responses were analyzed by logistic regression. Odds ratios for several indicators of high exposure to oncogenic viruses or chemical carcinogens in poultry plants and related industries were elevated, but not statistically significant, except the odds ratio for direct contact with the blood of meat in kitchens, eating places, etc. Established risk factors were replicated, and new ones identified. The study was unable to unequivocally assess risks due to oncogenic viruses or chemical carcinogenic exposures in poultry plants, mainly because observed elevated risks did not achieve statistical significance. The same also applies to some non-occupational factors. Noteworthy risk factors identified include the increased risks for eating cabbage, mussels, blood sausage, meringue, playing football, and decreased risks for history of frequent intake of soft drinks, gelatin-based meals, vitamins, frequent use of microwave oven to cook, and history of childhood diseases, and nonspecific symptoms. The significance of these findings is unknown, and they will need to be replicated in studies with adequate statistical power.


Assuntos
Matadouros/estatística & dados numéricos , Neoplasias Hepáticas/epidemiologia , Exposição Ocupacional/efeitos adversos , Aves Domésticas/virologia , Animais , Carcinógenos/toxicidade , Estudos de Coortes , Feminino , Humanos , Illinois/epidemiologia , Neoplasias Hepáticas/etiologia , Masculino , Maryland/epidemiologia , Missouri/epidemiologia , Vírus Oncogênicos/patogenicidade , Fumar/efeitos adversos , Inquéritos e Questionários
18.
Proc Natl Acad Sci U S A ; 115(45): 11603-11607, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30337483

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.


Assuntos
Linfócitos B/imunologia , Genoma Viral , Herpesvirus Galináceo 2/patogenicidade , Linfoma/patologia , Doença de Marek/patologia , Vírus Oncogênicos/patogenicidade , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Embrião de Galinha , Galinhas , DNA Viral/genética , DNA Viral/imunologia , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Contagem de Linfócitos , Linfoma/genética , Linfoma/imunologia , Linfoma/virologia , Doença de Marek/genética , Doença de Marek/imunologia , Doença de Marek/virologia , Vírus Oncogênicos/genética , Vírus Oncogênicos/imunologia , Baço/imunologia , Baço/virologia , Timo/imunologia , Timo/virologia , Carga Viral , Virulência , Replicação Viral
19.
Curr Opin Virol ; 32: 48-59, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30268926

RESUMO

Most humans are infected with at least one of the known human cancer viruses during their lifetimes. While the initial infection with these viruses does not cause major disease, infected cells can acquire cancer hallmarks, particularly upon immunosuppression or exposure to co-carcinogenic stimuli. Even though cancer formation represents a rare outcome of a viral infection, approximately one out of eight human cancers has a viral etiology. Viral cancers present unique opportunities for prophylaxis, diagnosis, and therapy, as demonstrated by the success of HBV and HPV vaccines and HCV antivirals in decreasing the incidence of tumors that are caused by these viruses. Here we review common characteristics and mechanisms of action of the human oncogenic viruses.


Assuntos
Carcinogênese , Neoplasias/virologia , Oncogenes , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/genética , Animais , Transformação Celular Neoplásica , Humanos , Hospedeiro Imunocomprometido , Camundongos , Vírus Oncogênicos/genética , Vacinação , Viroses/complicações , Viroses/prevenção & controle
20.
Radiographics ; 38(7): 2051-2068, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339518

RESUMO

The risk of developing malignancy is higher in patients with human immunodeficiency virus (HIV) infection than in non-HIV-infected patients. Several factors including immunosuppression, viral coinfection, and high-risk lifestyle choices lead to higher rates of cancer in the HIV-infected population. A subset of HIV-related malignancies are considered to be acquired immunodeficiency syndrome (AIDS)-defining malignancies, as their presence confirms the diagnosis of AIDS in an HIV-infected patient. The introduction of highly active antiretroviral therapy (HAART) has led to a significant drop in the rate of AIDS-defining malignancies, including Kaposi sarcoma, non-Hodgkin lymphoma, and invasive cervical carcinoma. However, non-AIDS-defining malignancies (eg, Hodgkin lymphoma, lung cancer, hepatocellular carcinoma, and head and neck cancers) now account for an increasing number of cancer cases diagnosed in HIV-infected patients. Although the number has decreased, AIDS-defining malignancies account for 15%-19% of all deaths in HIV-infected patients in the post-HAART era. Most HIV-related malignancies in HIV-infected patients manifest at an earlier age with a more aggressive course than that of non-HIV-related malignancies. Understanding common HIV-related malignancies and their specific imaging features is crucial for making an accurate and early diagnosis, which impacts management. Owing to the weakened immune system of HIV-infected patients, other entities such as various infections, particularly opportunistic infections, are prevalent in these patients. These processes can have confounding clinical and imaging manifestations that mimic malignancy. This article reviews the most common AIDS-defining and non-AIDS-defining malignancies, the role of imaging in their diagnosis, and the imaging mimics of malignancies in HIV-infected patients. ©RSNA, 2018.


Assuntos
Síndrome de Imunodeficiência Adquirida/complicações , Neoplasias/diagnóstico por imagem , Neoplasias/virologia , Vírus Oncogênicos/patogenicidade , Infecções Tumorais por Vírus/diagnóstico por imagem , Infecções Tumorais por Vírus/virologia , Síndrome de Imunodeficiência Adquirida/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade , Coinfecção , Diagnóstico Diferencial , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...